

Лекция 12

Тема Лекции: Основы теории термической обработки стали (продолжение).

Технологические особенности и возможности отжига и нормализации.

> к.ф.-м.н., PhD, ассоциированный профессор Тулегенова Auда Тулегенкызы

Цель лекции:

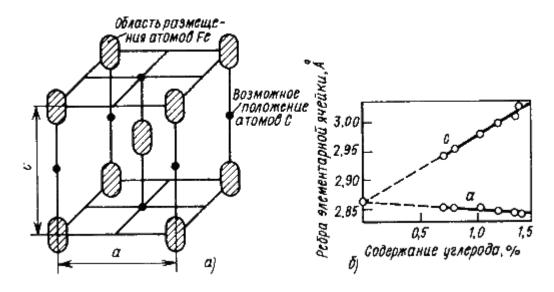
Ознакомление с сущностью процессов отжига и нормализации, их технологическими особенностями, влиянием на структуру и свойства сталей, а также рассмотреть области применения этих видов термической обработки.

- Основные вопросы:
 1. Превращение аустенита в мартенсит при высоких скоростях охлаждения
 2. Превращение мартенсита в перлит.
 3. Технологические возможности и особенности отжига, нормализации, закалки и отпуска
 4. Отжиг и нормализация. Назначение и режимы
 5. Отжиг первого рода.

Превращение аустенита в мартенсит при высоких скоростях охлаждения

Данное превращение имеет место при высоких скоростях охлаждения, когда диффузионные процессы подавляются. Солровождается полиморфным превращением Fe_{γ} в Fe_{α}

При охлаждении стали со скоростью, большей критической ($V > V \kappa$), превращение начинается при температуре начала мартенситного превращения ($M_{_{
m R}}$) и заканчивается при температуре окончания мартенситного превращения ($M_{_{
m R}}$).


В результате такого превращения аустенита образуется продукт закалки – мартенсит.

Минимальная скорость охлаждения Vк, при которой весь аустенит переохлаждается до температуры Мн и превращается, называется *критической скоростью закалки*

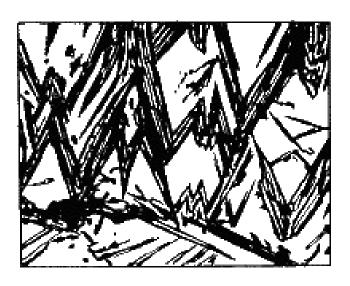
Так как процесс диффузии не происходит, то весь углерод аустенита остается в решетке и располагается либо в центрах тетраэдров, либо в середине длинных ребер

Мартенсит — пересыщенный твердый раствор внедрения углерода в \mathbf{Fe}_a .

При образовании мартенсита кубическая решетка \mathbf{Fe}_{α} сильно искажается, превращаясь в тетрагональную. Искажение решетки характеризуется степенью тетрагональности: c/a > 1. Степень тетрагональности прямопролорциональна содержанию углерода в стали

Кристаллическая решетка мартенсита (a); влияние содержания углерода на параметры a и c решетки мартенсита (δ)

Механизм мартенситного превращения имеет ряд особенностей


1. Бездиффузионный характер.

Превращение осуществляется по сдвиговому механизму. В начале превращения имеется непрерывный переход от решетки аустенита к решетке мартенсита (когерентная связь). При превращении гранецентрированной кубической решетки в объемно-центрированную кубическую атомы смещаются на расстояния меньше межатомных, т.е. нет необходимости в самодиффузии атомов железа.

2. Ориентированность кристаллов мартенсита.

Кристаллы имеют форму пластин, сужающихся к концу, под микроскопом такая структура выглядит как игольчатая. Образуясь мгновенно пластины растут либо до границы зерна аустенита, либо до дефекта. Следующие пластины расположены к первым под углами 60 или 120, их размеры ограничены участками между первыми пластинами

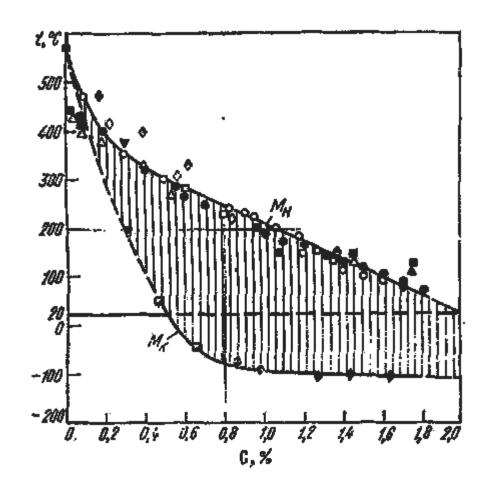
Механизм мартенситного превращения имеет ряд особенностей

Ориентированность кристаллов мартенсита

Ориентированный (когерентный) рост кристаллов мартенсита обеспечивает минимальную поверхностную энергию. При когерентном росте, из-за различия объемов аустенита и мартенсита, возникают большие напряжения. При определенной величины достижении кристаллов мартенсита, эти напряжения становятся равными пределу текучести B результате аустенита. нарушается когерентность и происходит отрыв решетки мартенсита от решетки Рост кристаллов аустенита. прекращается.

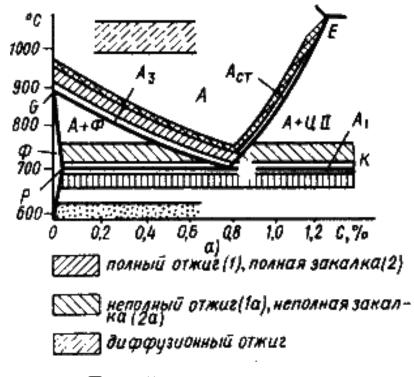
3. Очень высокая скорость роста кристалла, до *1000 м/с*.

4. Мартенситное превращение происходит только при непрерывном охлаждении.


Для каждой стали начинается и заканчивается при определенной температуре, независимо от скорости охлаждения.

Температуру начала мартенситного превращения называют мартенситной точкой M_H , а температуру окончания превращения — M_K . Температуры M_H и M_K зависят от содержания углерода и не зависят от скорости охлаждения

Для сталей с содержанием углерода выше $0,6 \% M_K$ уходит в область отрицательных температур


Мартенситное превращение чувствительно к напряжениям, и деформация аустенита может вызвать превращение даже при температурах выше M_H .

В сталях с *М_К* ниже *20°С* присутствует аустенит остаточный, его количество тем больше, чем ниже M_{H} и M_{K} (при содержании углерода *0,6...1,0* % количество аустенита остаточного -10%, при содержании углерода *1,5* % - до *50* %). В микроструктуре наблюдается в виде светлых полей между иглами мартенсита.

Зависимость температур начала (M_H) и конца (M_K) мартенситного превращения от содержания углерода в стали

Технологические возможности и особенности отжига, нормализации, закалки и отпуска

Левый угол диаграммы состояния железо — цементит и температурные области нагрева при термической обработке сталей

Нагрев может осуществляться в нагревательных печах, топливных или электрических, в соляных ваннах или в ваннах с расплавленным металлом, пропусканием через изделие электрического тока или в результате индукционного нагрева.

точки зрения производительности, максимальной нагрев окалинообразование, **уменьшает** обезуглероживание и рост аустенитного Однако необходимо учитывать перепад температур по сечению, что ведет К термических возникновению напряжений. Если растягивающие напряжения превысят предел прочности предел текучести, то коробление или образование трещин.

Вопросы для контроля изучаемого материала:

1. Какова основная цель отжига и нормализации стали?

2.В чём состоят различия между полным, неполным И изотермическим отжигом?

3. Чем нормализация отличается от отжига по температуре и режиму

охлаждения?

4. Какие структурные изменения происходят при этих видах термообработки?

5. В каких случаях применяют отжиг, а в каких — нормализацию?

Список литературных источников: 1. Новиков И. И. Материаловедение. — М.: Металлургия, 2019.

2. Callister W. D., Rethwisch D. G. Materials Science and Engineering: An Introduction. — Wiley, 2022.

3. Cullity, B. D., Graham, C. D. Introduction to Magnetic Materials. —

Wiley-IEEE Press, 2011.

4. Kittel, C. Introduction to Solid State Physics. — Wiley, 2018.

5. Coey, J. M. D. Magnetism and Magnetic Materials. — Cambridge University Press, 2010.